Antimicrobial Discovery Center
The Center translates basic discoveries into novel antimicrobial therapies to help resolve the Antimicrobial Resistance Crisis, a slow-moving pandemic, according to the WHO, combat Biowarfare and conventional pathogen threats. The Center is funded by grants from the NIH, The Schmidt Futures and the Steven & Alexandra Cohen Foundation.
The Lewis Lab
The Lewis Lab studies persister cells responsible for tolerance to antibiotics, uncultured bacteria of the environment and the microbiome, and works on drug discovery.
Who Are We
We study several related subjects – persister cells, microbiomes, and uncultured bacteria. This enables our work on antibiotic discovery. Persisters are dormant variants of regular cells which are tolerant to antibiotics and responsible for recalcitrance of biofilm infections. We identified a number of mechanisms for persister formation, and the first compound that kills them, acyldepsipeptide (Nature, 2013). Uncultured bacteria make up the majority of species in the environment, and are present in the human microbiome. We developed methods to grow these bacteria, and are finding growth factors that allow us to culture them in the lab. This led to the discovery of teixobactin, the first antibiotic with no detectable resistance (Nature 2015; 2022). A search for antibiotics from the microbiome led to the discovery of darobactin antibiotics (Nature 2019; 2021). We are currently developing a screen for antibiotics using single cell encapsulation in microdroplets containing intelligent reporters, and a microfluidics cell sorter.
Kim Lewis
University Distinguished Professor and the Director of Antimicrobial Discovery Center at Northeastern University.
Room 306C Mugar Life Sciences Building
Northeastern University
360 Huntington AveBoston, MA 02115
Email: k.lewis@northeastern.edu
Tel: 617.373.8238
Selected Publications
Sophisticated natural products as antibiotics
Nature
A new antibiotic selectively kills Gram-negative pathogens
Nature
The Science of Antibiotic Discovery
Cell
Stochastic Variation in Expression of the Tricarboxylic Acid Cycle Produces Persister Cells
mBio
Computational identification of a systemic antibiotic for Gram-negative bacteria
Nature Microbiology
The Role of Integration Host Factor in Escherichia coli Persister Formation
mBio
Evybactin is a DNA gyrase inhibitor that selectively kills Mycobacterium tuberculosis
Nature Chemical Biology
Teixobactin kills bacteria by a two-pronged attack on the cell envelope
Nature
A Selective Antibiotic for Lyme Disease
Cell
Bacterial persisters are a stochastically formed subpopulation of low-energy cells
PLoS Biology
The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase
Nature
Novel Antimicrobials from Uncultured Bacteria Acting against Mycobacterium tuberculosis
mBio